viernes, 26 de mayo de 2017

THE SHADOW || NASA’s SDO Sees Partial Eclipse in Space | NASA

NASA’s SDO Sees Partial Eclipse in Space | NASA



NASA’s SDO Sees 

Partial Eclipse in Space

On May 25, 2017, NASA's Solar Dynamics Observatory, or SDO, saw a partial solar eclipse in space when it caught the moon passing in front of the sun. The lunar transit lasted almost an hour, between 2:24 and 3:17 p.m. EDT, with the moon covering about 89 percent of the sun at the peak of its journey across the sun’s face. The moon’s crisp horizon can be seen from this view because the moon has no atmosphere to distort the sunlight.
While the moon’s edge appears smooth in these images, it’s actually quite uneven. The surface of the moon is rugged, sprinkled with craters, valleys and mountains. Peer closely at the image, and you may notice the subtle, bumpy outline of these topographical features.
animation of SDO observations of May 25, 2017, lunar transit
On May 25, 2017, NASA’s Solar Dynamics Observatory, or SDO, experienced a partial solar eclipse in space when it observed the moon passing in front of the sun. The lunar transit lasted about an hour, between 2:24 and 3:17 p.m. EDT, with the moon covering about 89 percent of the sun at the peak of its journey across the face of the sun.
Credits: NASA’s Goddard Space Flight Center/SDO/Joy Ng, producer
Later this summer on Aug. 21, 2017, SDO will witness another lunar transit, but the moon will only barely hide part of the sun. However, on the same day, a total eclipse will be observable from the ground. A total solar eclipse — in which the moon completely obscures the sun — will cross the United States on a 70-mile-wide ribbon of land stretching from Oregon to South Carolina. Throughout the rest of North America — and even in parts of South America, Africa, Europe and Asia — a partial eclipse will be visible.
The moon’s rough, craggy terrain influences what we see on Earth during a total solar eclipse. Light rays stream through lunar valleys along the moon’s horizon and form Baily’s beads, bright points of light that signal the beginning and end of totality.
The moon’s surface also shapes the shadow, called the umbra, that races across the path of totality: Sunlight peeks through valleys and around mountains, adding edges to the umbra. These edges warp even more as they pass over Earth’s own mountain ranges. Visualizers used data from NASA’s Lunar Reconnaissance Orbiter, or LRO, coupled with NASA topographical data of Earth, to precisely map the upcoming eclipse in unprecedented detail. This work shows the umbral shape varies with time, and is not simply an ellipse, but an irregular polygon with slightly curved edges.
LRO is currently at the moon gathering data and revolutionizing our understanding of Earth’s nearest celestial neighbor. Knowing the shape of Earth and the moon plays a big part in accurately predicting the umbra’s shape as it falls on Earth, come Aug. 21.
SDO will see its partial eclipse in space just after the total eclipse exits the United States.
For more information about the upcoming total solar eclipse, visit eclipse2017.nasa.gov.
Related:
Last Updated: May 26, 2017
Editor: Rob Garner

COLISIONES || Arranca la nueva temporada de física en el LHC / Noticias / SINC

Arranca la nueva temporada de física en el LHC / Noticias / SINC

SINC - Servicio de información y noticias científicas



Arranca la nueva temporada de física en el LHC



Esta semana ha vuelto a funcionar el gran colisionador de hadrones del CERN, el mayor acelerador de partículas del mundo. En pocas semanas se producirán más de mil millones de choques cada segundo en experimentos como ATLAS, CMS, ALICE y LHCb, donde los científicos explorarán campos desconocidos de la física en rangos de energía jamás alcanzados.



SINC |  | 25 mayo 2017 15:31

<p>Registro de datos del experimento CMS efectuado este 23 de mayo. / CPAN/CERN</p>

Registro de datos del experimento CMS efectuado este 23 de mayo. / CPAN/CERN



El LHC o gran colisionador de hadrones del CERN, en la frontera franco-suiza, comenzó este martes a funcionar, permitiendo a los experimentos tomar datos por primera vez en 2017. Las operaciones comienzan gradualmente, primero con solo unos pocos paquetes de protones en los haces. El equipo que controla el acelerador de partículas más potente del mundo incrementará progresivamente el número de protones que circulan por el anillo del LHC, y reducirá el tamaño de los haces en los puntos de interacción. En pocas semanas, se producirán más de mil millones de choques cada segundo en los experimentos.
El año pasado, el LHC produjo una cantidad impresionante de datos, unos 6,5 billones de colisiones, lo que representa una luminosidad integrada de unos 40 femtobarns inversos. La luminosidad, que corresponde al número de colisiones por unidad de superficie en un periodo determinado, es un indicador crucial del funcionamiento de un acelerador. En 2017, los operadores esperan obtener la misma cantidad de colisiones que en 2016 pero en un periodo inferior, puesto que el LHC ha arrancado un mes más tarde debido a la extensión de la parada técnica anual.
En pocas semanas se producirán más de mil millones de choques cada segundo en los experimentos del LHC
“En los primeros dos años de operaciones a una energía de 13 teraelectronvoltios (TeV) hemos conseguido entender muy bien cómo funciona el LHC, lo que nos permite optimizar más su operación en el tercer año”, dice Frédérick Bordry, director de Aceleradores y Tecnología del CERN. “Nuestro objetivo es incrementar la luminosidad y mantener la excelente disponibilidad del LHC, lo que sería un gran logro”.
La física de partículas se basa en el análisis estadístico de varios fenómenos, por lo que el tamaño de las muestras es esencial. En otras palabras, cuanto mayor es el número de colisiones que revela un cierto fenómeno, más fiable es el resultado. Los experimentos tratan de aprovechar la gran cantidad de datos proporcionada por el LHC para continuar su exploración de la física a la mayor energía jamás alcanzada por un acelerador de partículas.
“Los experimentos del LHC están preparados para doblar sus estadísticas comparadas con las que obtuvieron en 2016 a 13 TeV. Gracias a los nuevos datos, serán capaces de reducir las incertidumbres que rodean sus observaciones cada vez que entramos en un territorio inexplorado”, dice Eckhard Elsen, director de Investigación y Computación.
Mejorar lo conocido y explorar lo desconocido
Los equipos de investigación del LHC trabajan en dos grandes áreas: mejorar su conocimiento de fenómenos conocidos y explorar lo desconocido. El fenómeno conocido es el modelo estándar de física de partículas, una teoría que comprende todo nuestro saber actual sobre las partículas elementales. El bosón de Higgs, descubierto en 2012, juega un papel crucial en este modelo. Es una partícula escalar, en lo fundamental distinta al resto de partículas elementales.
En 2017, los experimentos ATLAS y CMS continuarán trabajando en determinar las características de esta partícula. Estos dos detectores gigantes de propósito general observarán sus modos de desintegración y cómo interactúa con otras partículas. Sus medidas podrían proporcionar indicios de ‘nueva física’ más allá del modelo estándar. Los experimentos llevarán a cabo medidas precisas de otros procesos del modelo estándar, en particular los relacionados con el quark top, la partícula elemental más pesada.
La nuevas medidas podrían proporcionar indicios de ‘nueva física’ más allá del modelo estándar
Los físicos esperan ser capaces de identificar discrepancias entre sus medidas y el modelo estándar. Esta es una de las formas de explorar lo desconocido. Aunque describe de forma precisa muchos de los fenómenos de lo infinitamente pequeño, el modelo deja muchas cuestiones sin responder. Por ejemplo, describe solo el 5% del Universo; el resto está formado por materia y energía oscuras, cuya naturaleza es todavía desconocida. Cada discrepancia con respecto a la teoría podría llevar hacia otros marcos teóricos de nueva física que podrían resolver las cuestiones que surgen.
ATLAS, CMS y LHCb miden procesos de forma precisa para detectar anomalías. Los dos primeros buscan también nuevas partículas como las predichas por la supersimetría, que podrían ser los componentes de la materia oscura.
Por su parte, LHCb se interesa también por el desequilibrio entre materia y antimateria. Ambas se debieron crear en cantidades iguales en el Big Bang, pero la antimateria ha desaparecido prácticamente del Universo. LHCb estudia el fenómeno conocido como “violación de carga-paridad”, que se cree está detrás de este desequilibrio.
Este año no se producirán choques entre iones de plomo, en cuyo estudio está especializado el experimento ALICE, que continuará analizando los datos de 2016 y registrará colisiones entre protones que también permiten estudiar la fuerza fuerte. El experimento anunció recientemente la observación de un estado de la materia parecido al plasma de quarks y gluones (el estado de la materia que existió unos pocos milisegundos después del Big Bang) en los choques de protones de 2016.
Finalmente, también están programados varios días de funcionamiento del LHC con haces ‘descomprimidos’ para los experimentos TOTEM y ATLAS/ALFA.

TURBULENCIAS || La misión Juno muestra el magnetismo y los ciclones gigantes de Júpiter / Noticias / SINC

La misión Juno muestra el magnetismo y los ciclones gigantes de Júpiter / Noticias / SINC

SINC - Servicio de información y noticias científicas

La misión Juno muestra el magnetismo y los ciclones gigantes de Júpiter



Ciclones de hasta 1.400 km de diámetro en las regiones polares, emanaciones de metano que alteran el clima y un campo magnético que, además de tener una fuerza inesperada, genera auroras espectaculares cuando interacciona con el viento solar. Estos son los primeros resultados de la misión Juno de la NASA, que el año pasado comenzó a analizar el mayor de los planetas del sistema solar: Júpiter.



SINC |  | 25 mayo 2017 20:00

<p>Imagen del polo sur de Júpiter captado por la nave Juno (a 52.000 km), donde se observan ciclones de hasta 1.000 km de diámetro. Se combinaron varias fotografías tomadas con la JunoCam en tres órbitas distintas para mostrar todas las áreas a la luz del día, con color mejorado y proyección estereográfica. / NASA / JPL-Caltech / SwRI / MSSS / Salón Betsy Asher / Gervasio Robles</p>



Imagen del polo sur de Júpiter captado por la nave Juno (a 52.000 km), donde se observan ciclones de hasta 1.000 km de diámetro. Se combinaron varias fotografías tomadas con la JunoCam en tres órbitas distintas para mostrar todas las áreas a la luz del día, con color mejorado y proyección estereográfica. / NASA / JPL-Caltech / SwRI / MSSS / Salón Betsy Asher / Gervasio Robles



El 27 de agosto de 2016 la nave espacial Juno de la NASA dio su primera vuelta alrededor de Júpiter, empezando una misión de 20 meses en la que, gracias a su órbita muy elíptica, ya ha rodeado varias veces las regiones polares y se ha aproximado a unos 4.200 kilómetros de la espesa capa de nubes. Aunque en los últimos meses ya se habían facilitado imágenes de los polos, los resultados detallados de los primeros encuentros con este planeta –el más grande del sistema solar– se publican ahora en portada y en dos artículos de la revista Science.
Algunos ciclones de Júpiter tienen 1.400 km de diámetro
En el primero, liderado por el investigador Scott Bolton desde el Southwest Research Institute de San Antonio (Texas, EE UU), se presentan los datos de las capas nubosas. Las imágenes de los polos jovianos, desconocidos hasta la llegada de Juno, muestran un escenario caótico con estructuras ovaladas blanquecinas, muy diferente al que se observa en las regiones polares de Saturno, con su misterioso patrón nuboso hexagonal.
Con la secuencia de imágenes transmitidas por la nave a lo largo del tiempo, los investigadores han podido determinar que los óvalos son en realidad gigantescos ciclones. Algunos alcanzan un tamaño de hasta 1.400 kilómetros de diámetro.
170525_Jupiter_JEP Connerney et al Science 2017
Proyección ortográfica de imágenes captadas por la cámara JunoCam en las regiones polares norte y sur de Júpiter. / J.E.P. Connerney et al., Science (2017)
Al pasar por encima de las capas nubosas, la nave también midió la estructura termal de la atmósfera profunda del planeta. La información registrada revela la existencia de unas estructuras inesperadas que los autores interpretan como señales de acumulación de amoniaco, que brota desde la atmósfera profunda generando colosales sistemas climáticos.
¿Tiene un núcleo este gigante gaseoso? 
Además, se han realizado mediciones del campo gravitatorio de Júpiter, lo que ayuda a los científicos a comprender mejor la estructura atmosférica de este gigante gaseoso y determinar si tiene un núcleo sólido.
“El campo gravitatorio medido por Juno difiere sustancialmente de la última estimación disponible y es un orden de magnitud más preciso”, señalan los autores, que explican: “Esto tiene implicaciones para conocer la distribución de elementos pesados en el interior de Júpiter, incluyendo la existencia de un núcleo y su masa”
Por su parte, las mediciones enfocadas al enorme campo magnético del planeta revelan que, cerca de la superficie, este campo supera con mucho las expectativas, ya que es considerablemente más fuerte de lo que predecían los modelos:  alcanza los 7.766 gauss, unas diez veces más que el campo magnético de la Tierra.
El segundo estudio, dirigido por el investigador John Connerney del Space Research Corporation in Annapolis (Maryland, EE UU), también ofrece nueva información sobre las auroras y la magnetosfera de Júpiter, una región donde el campo magnético del planeta interacciona y desvía el viento solar.
170525_auroras_
Auroras jovianas captadas por la nave Juno en la zona polar norte. / J. E. P. Connerney et al./Science 2017
Tras entrar en la magnetosfera el 24 de junio de 2016, Juno se topó con el arco o campo de choque –estático– del gigante gaseoso. Cuando la nave se acercó al planeta por primera vez, encontró un único arco de choque, pero detectó varios cuando volvió en las siguientes órbitas. Según los autores, esto sugiere que la magnetosfera se encontraba en proceso de expansión cuando la nave trazó su primera órbita.
Se han fotografiado espectaculares auroras en las regiones polares de Júpiter 
Desde su posición claramente privilegiada por encima de los polos, que le ofrece una perspectiva única, la nave detectó rayos de electrones moviéndose hacia abajo en dirección vertical, hacia la superficie del planeta, desprendiendo energía sobre la atmósfera superior. Seguramente, esta es la fuente energética que activa las enormes auroras captadas por Juno.
“Los detectores de plasma y partículas energéticas registraron electrones precipitándose en las regiones polares, produciendo intensas auroras, que pudimos observar simultáneamente con espectrógrafos de imágenes ultravioletas e infrarrojas”, destacan los investigadores.
Esta ‘lluvia’ de electrones parece distribuirse de forma distinta a como lo hace en la Tierra, lo que intriga a los científicos y plantea un modelo de interacción entre Júpiter y su entorno espacial radicalmente distinto a lo esperado. Los próximos resultados de la misión Juno ayudarán a resolver este y otros interrogantes sobre el gigante gaseoso.
170525_JupiterIGIF_JEP-Connerney-et-al-Science-2017-2
GIF de Júpiter generado con imágenes tomadas por la nave Juno. /  J.E.P. Connerney et al., Science (2017)
Referencia bibliográfica:
S.J. Bolton et al.: "Jupiter’s interior and deep atmosphere: The initial pole-to-pole passes with the Juno spacecraft". J.E.P. Connerney et al.: "Jupiter’s magnetosphere and aurorae observed by the Juno spacecraft during its first polar orbits”. Science, 26 de mayo de 2017.

The usefulness of ‘useless’ knowledge | MercatorNet | May 26, 2017 |

The usefulness of ‘useless’ knowledge

| MercatorNet | May 26, 2017 |







The usefulness of ‘useless’ knowledge

Intellectual freedom and private philanthropy built the modern world.
Donald L. Drakeman | May 26 2017 | comment 


Einstein's 70th Birthday at the IAS, Princeton, with Gödel, Oppenheimer, and other greats.
Deep into the Great Depression, and only weeks after Hitler invaded Poland, Harper’s Magazine published Abraham Flexner’s surprising homage to two increasingly unpopular ideas: intellectual freedom and useless knowledge. Universities in some parts of the world had become what he called “tools of . . . a special political, economic or racial creed,” while others were focusing on practical education such as engineering, technology, and the professions.
Flexner set off in a completely different direction with the founding of the Institute for Advanced Study in Princeton, where members would endure no faculty meetings, suffer no committees, supervise no students, and, ultimately, have, as he put it to one potential recruit, “no duties—only opportunities.”
World-renowned scholars, lured by those opportunities, and, for some, fleeing the dire consequences of intolerance, found a new academic home in its three loosely titled “schools” of mathematics, humanistic studies, and economics and politics. These academics included such luminaries as Albert Einstein, Wolfgang Pauli, John von Neumann, Erwin Panofsky, and a host of others.
All of these opportunities for intellectual inquiry free of goals, metrics, deliverables, and assessments were not designed simply to celebrate uselessness for its own sake. To the contrary, Flexner argued that curiosity-driven research, the “pursuit of . . . useless satisfactions,” will be “the source from which undreamed-of utility is derived.” Flexner was remarkably prescient.
This unprecedented freedom for scholars such as Einstein and von Neumann to pursue apparently useless knowledge ultimately “enabled the nuclear and digital revolutions,” as current Institute director Robbert Dijkgraaf points out in his accompanying “World of Tomorrow” essay in Princeton University Press’s republication of Flexner’s lively, powerful, and surprisingly timely essay: The Usefulness of Useless Knowledge.
Flexner’s Lasting Impact Upon Scientific Study
Flexner’s Institute for Advanced Study is one of the greatest second acts in educational history. His first major triumph, of which we continue to be the beneficiaries, was the upgrading of medical education through tougher admissions and graduation standards, as well as a dedication to evidence-based teaching and research.
Much of today’s medical school curriculum had its origins in the Carnegie Foundation’s 1910 “Flexner Report.” Taking Johns Hopkins (where he had studied classics) as a model, Flexner convinced some of the wealthiest men in America to donate massive sums for the establishment of modern, research-oriented medical schools at Chicago, Columbia, Rochester, and elsewhere. His efforts to transform the training of the nation’s physicians, as much as his founding of the Institute for Advanced Study, inspired the New York Times to say in a 1959 page-one obituary, “No other American of his time has contributed more to the welfare of this country and of humanity in general.”
Flexner succeeded in setting medical education on a modern scientific course through a powerful blend of knowledge, passion, and, perhaps most importantly, a knack for talking extremely wealthy people into following his lead. He next turned his potent skills toward changing the future itself. Surprisingly, in light of all of his efforts to enhance medical training, Flexner launched the Institute for Advanced Study by diverting a large gift that a wealthy family had planned to use to establish a new medical school. He convinced them instead to found a new sort of institution in Princeton, “a paradise for scholars who . . . have won the right to do as they please and who accomplish most when enabled to do so.”
Flexner’s pitch rested on a brief history of the major advances in science and medicine through the ages. He traced one well-known practical discovery after another back to its foundations in curiosity-driven, fundamental research that seemed, at the time, to have no possible connection with any sort of useful application.
When one potential donor held up Marconi’s invention of the radio as the most useful event in modern science, Flexner reminded him that this was an instance of completely “useless” research in electromagnetic waves by Maxwell and Hertz half a century before being “seized upon by a clever technician.” Giants of Western science, from Galileo to Bacon, Newton, and many others, provided yet further evidence for Flexner’s basic insight: “throughout the whole history of science most of the really great discoveries which . . . ultimately proved to be beneficial to mankind had been made by men and women who were driven not by the desire to be useful but merely the desire to satisfy their curiosity.”
The Contemporary Importance of the Humanities
If Flexner wanted equally potent evidence of the usefulness of the humanities, he could have pointed to his own triumphant summary of the progress of science, a historical exercise that netted millions for the Institute. Yet, although the Institute included schools devoted to the humanities and social sciences as well as mathematics, his enthusiastic conclusions about utility are all science-driven.
When he turned to non-scientific fields, Flexner emphasized instead “the overwhelming importance of spiritual and intellectual freedom.” Poetry, music, art and other “expression[s] of the untrammeled human spirit” need no more justification than the “mere fact [that] they bring satisfaction to an individual soul bent upon its own purification and elevation.”
Flexner could also have invoked some equally essential pragmatic contributions of the humanities to modern life. The American Framers, for example, created our constitutional government on the foundations of classical educations that had taught them lessons about human nature and politics from the time of the ancient Greeks and Romans to the Enlightenment. Since then, presidents, members of Congress, and Supreme Court justices have all shaped and reshaped that government based on their understanding of the fields Flexner called humanistic studies, economics, and politics.
Just how closely related all of these diverse fields are can be seen in the driverless cars of the future, which will be based on two discoveries Dijkgraaf traces directly to the Institute’s early members. These autonomous vehicles will be operated by computers enabled by von Neumann’s work, and steered by GPS systems that rely on Einstein’s theory of relativity. But those cars’ driving systems will not be fully programmable until we can solve one of the classic dilemmas of modern philosophy.
The issue arises when the car has to make a split-second, emergency choice between running down several people or crashing into a wall and killing the driver. This is a real life version of what philosophers often call the trolley problem, a scenario in which you are on a bridge over the tracks watching a trolley about to run over five people. You could save them by pushing the very fat man next to you off the bridge and onto the tracks in front of the trolley. For years, philosophers have asked us to consider whether we should push him or not.
Today’s version of the problem is a little more personal. We are no longer the one doing the pushing. We’re the fat guy, and the computer is in the driver’s seat. Clearly, knowing what to do with our technology is as critical as the original scientific insights that enabled it to exist. The humanities can be as useful, and indeed as essential, as the sciences.
How Should Scientific Research Be Funded?
Finally, this new volume also offers a valuable case study in how our institutional thinking about funding basic research has changed as the federal government has grown ever larger.
Like Flexner, current Institute Director Dijkgraaf cites numerous instances of useless research leading to breakthroughs in virtually every aspect of our high-tech lives. He, too, decries a challenging economic climate: “Driven by an ever-deepening lack of funding, against a background of economic uncertainty, [and] global political turmoil . . . research criteria are becoming dangerously skewed toward . . . short-term goals.” To find a solution, the contemporary administrator turns in a very different direction from that taken by the entrepreneurial founder.
Flexner directed his inspirational fundraising pitches at the Rockefellers, Carnegies, Eastmans, Bambergers, and numerous other wealthy families, convincing them to contribute vast sums to medical education and to the Institute’s pursuit of useless knowledge. Dijkgraaf instead worries at length about a shrinking federal budget where “basic research is too blithely given short shrift.” In Flexner’s time, the federal budget had little room for non-defense research spending, and that is not where he looked for support. He went where the money was—the wealthiest families in America.
Flexner’s story was not just one of scientific progress, but also a history of how scientists and other scholars have cobbled together the funding they have needed, often from wealthy patrons of the arts and sciences. In the twentieth century, essentially for the first time, researchers became dependent on what seemed, for a while, to be a consistently growing federal research budget.
Now, as the government sinks further in debt, and as other priorities clamor for attention, researchers need to figure out what to do when the government does not answer their calls. The answer is that they need to study Flexner’s enormously successful methods.
One of the best reasons to reissue The Usefulness of Useless Knowledge today is to remind us of how many path-breaking and life-changing discoveries have been made possible by philanthropic support. To help today’s researchers learn how to tell that story as well as Flexner did, Princeton University Press could perform an important service by adding his other Harper’s essay to the next edition.
Titled “Adventures in Money-Raising,” it is both a chronicle of how he established some of America’s greatest medical schools and a first-class primer on how to ask people to part with large sums in the interest of worthwhile causes. Those of us who believe that basic research is such a cause need to emulate the entrepreneurial Flexner so that useless research will continue to change the world in unexpected ways.
Donald L. Drakeman is Distinguished Research Professor in the Program on Constitutional Studies at the University of Notre Dame, and the author of Why We Need the Humanities: Life Science, Law and the Common GoodRepublished with permission from The Public Discourse.

“Now that you’re here …  we’ve got a small favour to ask. More people are reading MercatorNet, but far fewer are donating. Unlike many online magazine, we haven’t put up a paywall and we don't have lots of obtrusive advertising. So you can see why we need to ask for your help.
MercatorNet’s independent, vibrant and informative articles take a lot of time, money and hard work to produce. But we do it because we believe our views on human dignity matter – and because they might be your views as well.

If every fan of MercatorNet donated just $10, our future would be much more secure.
    Donate Now   
- See more at: https://www.mercatornet.com/features/view/the-usefulness-of-useless-knowledge/19870#sthash.URpYTYPa.dpuf



MercatorNet

May 26, 2017

This week we have finally caught up with a wonderful book, Surprised by Beauty, published last year as a guide to music lovers who are, to quote the author Robert Reilly, “thirsting for the beauty” that seems absent in modern music. And by that he means modern art music, not pop music.
In fact, it is not so much the book as the author who features in today’s article, with Mr Reilly (a man of many accomplishments) answering Michael Cook’s questions about what we normally think of as 20th century music -- that which tortures the soul with its atonality and unnatural rhythms – and the neglected stream of works that have kept up the link between beauty and the spirit.
It’s an eminently quotable interview, but here’s just one snippet:
One of the greats of the 20th century, Jean Sibelius, wrote: “The essence of man’s being is his striving after God. It [the composition of music] is brought to life by means of the logos, the divine in art. That is the only thing that has significance.”
One other article calls for special mention: Tamara El Rahi, who contributes to Family Edge, writes movingly today of the miscarriage of her second child at nine weeks. In a note earlier she said: “Writing this piece was helpful to my healing process I think. Please pray for us.” Thank you, Tamara, for sharing this sorrowful experience with us, one that so many mothers and fathers suffer.









Carolyn Moynihan 
Deputy Editor, 
MERCATORNET

Surprised by Beauty: modern music for the soul
By Robert R. Reilly
A new book offers a listener's guide to the recovery of modern music.
Read the full article
 
The usefulness of ‘useless’ knowledge
By Donald L. Drakeman
Intellectual freedom and private philanthropy built the modern world.
Read the full article
 
Mourning after miscarriage
By Tamara El-Rahi
A baby lost to this world but not to our hearts.
Read the full article
 
‘I’m macro-annoyed with micro-aggression theory’
By Christina Hoff Sommers
The Factual Feminist says friendship is the way to overcome bigotry, real or imagined.
Read the full article
 
Scholars beware: mobbing is the new discussion
By Barbara Kay
A lone academic defies political correctness.
Read the full article
 
Why Ramadan is called Ramadan: 6 questions answered
By Mohammad Hassan Khalil
The origins and purpose of the 'spiritual training camp'.
Read the full article
 
Technology success stories from Cote d’Ivoire, Benin and Senegal
By Eugene Ohu
Using technology to provide jobs and improve the lives of African youths.
Read the full article
 
The end of a dynasty?
By Marcus Roberts
Perhaps, unless more boys are born...
Read the full article
 
Lutheran songs: a musical gift for all Christians
By Chiara Bertoglio
The reformer planted the seeds of an extraordinary musical culture in Germany.
Read the full article
 
No, the norm of marital monogamy is not crumbling
By Alan J. Hawkins
Rumours of its death are greatly exaggerated.
Read the full article
 
The New York Times flies the flag for ‘open’ marriage
By Nicole M. King
But no matter what you call adultery, it still kills marriages.
Read the full article
MERCATORNET | New Media Foundation 
Suite 12A, Level 2, 5 George Street, North Strathfied NSW 2137, Australia 

Designed by elleston
The usefulness of ‘useless’ knowledge